LYCEE

no“‘f Jeu de tests et assertions

1. Test d’une fonction

Lorsque I'on exécute une fonction, elle peut fonctionner comme prévu, mais elle peut aussi "planter”, ou bien
boucler indéfiniment, ou bien ne pas produire le résultat escompté. Et méme si elle fonctionne comme prévu, rien
ne garantit que ce soit toujours le cas quelles que soient les données d’entrée qu’on lui fournit. Tester une fonction
consiste a vérifier qu’elle fonctionne comme prévu dans un maximum de situations possibles.

Pour cela, il faut écrire un ou plusieurs jeux de tests et s’assurer que les tests passent avec succes.

2. Jeux de tests

Deux des méthodes de base qui consiste a tester la fonction sont I'utilisation :
e Du print dans le programme

e Dushell.
test_et_assertion.py test_et_assertion.py
def minutes(h, m): def minutes(h, m):
"""penvoie en minutes le temps donné en heure (h) et minutes(m)""" """renvoie en minutes le temps donné en heure (h) et minutes(m)"""
nb_minutes = h*6@ + m nb_minutes = h*6@ + m
return nb_minutes return nb_minutes

print(minutes(1, 20))
print(minutes(@, 30))

Console
>>>
>>> minutes(1, 20)

80
>>> minutes(@, 30)

Console

>>>

80
30 3e

Test avec un print Test dans le shell
L’ensemble des tests réalisé par ces deux méthodes s’appellent un jeu de tests.

Ces méthodes ne laissent pas de traces des tests réalisés (si on conserve I'instruction print, on remplit de message
le shell lors de I'exécution du programme).

Conserver une trace des tests permet d’aider a la compréhension de la fonction au travers des différents cas
testés.

3. Assertions
3.1. assert

Le mot-clé assert permet de définir un test d'assertion. Sa syntaxe est la suivante :
assert condition, texte alternatif
e Sila condition est vraie, il ne se passe rien et le programme continue de se dérouler normalement.
e S la condition est fausse, une erreur de type 'AssertionError' est déclenchée et le texte alternatif
détaille cette erreur.

test et smerton.py
def minutes(h, m):
"""penvoie en minutes le temps donné en heure (h) et minutes(m)"""
nb_minutes = h*3¢ + m
return nb_minutes

tet et asseton
def minutes(h, m):
"""renvoie en minutes le temps donné en heure (h) et minutes(m)"""
nb_minutes = h*60 + m

return nb_minutes p ~
! erreur dans la fonction

, 'erreur dans la fonction'

assert minutes(1l, 20)
assert minutes(8, 30)

assert minutes(1l, 28) == 88, 'erreur dans la fonction'
assert minutes(®, 38) == 3@, 'erreur dans la fonction'
>>>
o Tracebac N 1 )
>>>
>>>
=rt minut
A r 1
>>>
Fonction sans erreur Fonction avec erreur

A chaque exécution du programme, les tests d’assertions vont &tre exécutés.

C.CHEREL / NSI_jeu_test_assertion.docx 1/2



LYCEE

no%”eﬁ?%it%"% Jeu de tests et assertions

QUESTEMBERT
Le chamin de volre réussie

Pour ne pas exécuter les tests d’assertions a chaque exécution du programme, Il est possible aussi de placer les

tests d’assertions d’une fonction dans un fonction de test.

Cette fonction pourra alors étre exécutée seulement lors de la phase de mise au point.

‘test_et_assartion.py

def minutes(h, m):

"""penvoie en minutes le temps donné en heure (h) et minutes(m)"""

nb_minutes = h*6@ + m
return nb_minutes

def test_minutes():
"""test de la fonction minutes"""

assert minutes(1l, 20) == 80, 'erreur dans la fonction'
assert minutes(@, 30) == 38, 'erreur dans la fonction'
Conscle
>>>
>>> test_minutes()
>

Fonction test_minutes

3.2. Préconditions

Il est souvent nécessaire de tester des préconditions sur les arguments d'une fonction, pour s'assurer que celle-ci

fonctionnera bien selon le schéma voulu. Pour ceci, il est possible d’utiliser une assertion.

testot_assertion gy
def minutes(h, m):
"""renvoie en minutes le temps donné en heure (h) et minutes(m)"""
assert type(h) == int, 'h doit etre un chiffre entier'
assert h >= @, 'h doit étre positif ou nul’

assert type(m) == int and m >= 8, 'm doit étre un entier positif ou nul'

nb_minutes = h*6@ + m
return nb_minutes

Consale
33>
>>> minutes(1l, -
Tr k (most

assert type(m) int and m 'm doit étre un entier positif ou nul’

AssertionError: m doit &tre un T:,Ll'?i positif ou nul
>
Essai avec un chiffre négatif pour les minutes

3.3. Test de la fonction appartient

Soit la fonction suivante :

def appartient(v, t):
"""penvoie True si l'entier v appartient au tableau d'entiers t"""
for i in range(len(t)):
if t[i] == v:
return True
return False

£ Dans la fonction appartient, créer une assertion pour tester la précondition que v est entier.

& Créer une fonction test_appartient qui teste la fonction appartient dans les cas suivants :

e testun tableau vide

e Lavaleur v se situant en début du tableau

e Lavaleur v se situant en fin de tableau

e Lavaleur v se situant en milieu de tableau

e Lavaleur v ne se situant pas dans le tableau

C.CHEREL / NSI_jeu_test_assertion.docx 2/2




