

Les interruptions

Systèmes d’Information

et Numérique

C.CHÉREL / SIN_DR_interruptions.docx 1/2

1. Les interruptions

Une interruption consiste à interrompre momentanément le programme principal
exécuté pour effectuer un autre travail. Quand cet autre travail est terminé, on
retourne à l’exécution du programme principal à l’endroit exact où il avait été laissé.
Cet autre travail s’appelle le programme d’interruption ou ISR (Interrupt Service
Routine).

Le programme d’interruption doit avoir un temps d’exécution le plus court possible.
Par conséquent, il ne fera aucun calcul compliqué ni d’appel à des fonctions longues.

2. Les différentes interruptions

Il existe plusieurs sources d’interruption :

• Les interruptions matérielles, aussi appelé interruption externe (interruption liée au changement de la
tension présente sur une broche numérique.

• Les interruptions logicielles (déclenchées par des instructions spéciales du processeur (timers…)).

L’interruption matérielle évite de surveiller en permanence l’état d’une broche sur laquelle est raccordé un capteur
ou un bouton poussoir. Au changement d’état, le programme d’interruption est exécuté.
Pour l'ESP32, toutes les broches du GPIO peuvent être utilisées en interruption, à l'exception de GPIO 6 à GPIO 11.

3. Configurer une interruption dans MicroPython

3.1. Fonction de gestion des interruptions

La fonction de gestion des interruptions doit être aussi simple que possible, afin que le processeur revienne
rapidement à l’exécution du programme principal. La meilleure approche consiste à signaler au code principal que
l’interruption s’est produite en utilisant une variable globale, par exemple.

def fct_interruption(pin):
 global impulsion
 impulsion = True

3.2. Configuration du GPIO

La broche d’interruption agira en tant qu’entrée.

bp = Pin(26, Pin.IN)

3.3. Méthode irq()

La méthode irq() permet d’attacher une interruption à la broche d’interruption.

bp.irq(trigger = Pin.IRQ_RISING, handler = fct_interruption)

La méthode irq() accepte les arguments suivants :

• trigger définit le mode de déclenchement :
o Pin.IRQ_RISING : déclenche l’interruption sur front montant

(passage de 0 à 1) ;
o Pin.IRQ_FALLING : déclenche l’interruption sur front

descendant (passage de 1 à 0) ;

• handler définit la fonction qui sera appelée lorsqu’une interruption sera détectée (ici fct_interruption).

Les interruptions

Systèmes d’Information

et Numérique

C.CHÉREL / SIN_DR_interruptions.docx 2/2

3.4. Exemple

L’action sur le bouton poussoir (front montant) est détecté même si le programme
principal est occupé à une autre tâche (temporisation de 5 secondes).
La LED change d'état à l’issue de la fin de l’autre tâche (temporisation) si besoin.

from machine import Pin
from time import sleep

impulsion = False
etat_led = False

led = Pin(25, Pin.OUT)
bp = Pin(26, Pin.IN)

La fonction d'interruption
def fct_interruption(pin):
 global impulsion
 impulsion = True
 print("Appui sur BP détecté")

Spécifie la fonction à appeler lorsqu'une interruption externe survient
bp.irq(trigger = Pin.IRQ_RISING, handler = fct_interruption)

Le programme principal
while True:
 if impulsion:
 if led.value()==1:
 led.value(0)
 else:
 led.value(1)
 impulsion = False
 sleep(5)

bp.irq(trigger = Pin.IRQ_RISING, handler = fct_interruption)

La fonction fct_interruption est appelée à chaque fois qu'un front montant est détecté sur le bouton poussoir
bp (GPIO26).

impulsion = True

La variable impulsion de type booléen passe à True quand on lance le programme d'interruption (fonction
fct_interruption) et repasse à False (dans le programme principal) à l’issue du changement d’état de la LED.
Cette variable est utilisée dans le programme principal pour allumer ou éteindre la Led.
L’utilisation de la variable impulsion permet d'avoir un temps d’exécution le plus court possible de la fonction
fct_interruption.

Sources : https://www.gcworks.fr/tutoriel/esp/Lesinterruptions.html
 https://www.raspberryme.com/micropython-interruptions-avec-esp32-et-esp8266/
 https://docs.micropython.org/en/latest/library/machine.Pin.html

https://www.gcworks.fr/tutoriel/esp/Lesinterruptions.html
https://www.raspberryme.com/micropython-interruptions-avec-esp32-et-esp8266/
https://docs.micropython.org/en/latest/library/machine.Pin.html

